Question	Acceptable Answers	Reject	Mark
Number			
1 (a)	C_nH_{2n+2}		1
	IGNORE 'where n=1, 2, 3 etc' or 'where n is greater than 1'		

Question Number	Acceptable Answers	Reject	Mark
1(b)(i)	$C_{10}H_{22} + 10\frac{1}{2}O_2 \rightarrow 10CO + 11H_2O$	21 [0]	1
	ALLOW 21 / 2 O ₂		
	ALLOW any correct multiples		
	IGNORE state symbols, even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
1(b)(ii)	Any statement that makes it clear there is not enough air or oxygen e. Limited supply of air / limited supply of oxygen / not enough air / not enough oxygen / lack of oxygen / little amount of oxygen/ small amount of oxygen IGNORE "it is not completely oxidized"		1

Question Number	Acceptable Answers	Reject	Mark
1(c)	First markDative pair of e ⁻ between S and right- hand O(1)		3
	Second mark Two bond pairs between S and left- hand O (1)		
	Third markTwo lone pairs on left-hand O, onelone pair on central S and three lonepairs on right-hand O atom(1)		
	If 2 double bonds between sulfur and each oxygen then the third mark can be given for two lone pairs on both oxygens and one lone pair on central S		
	NOTE		
	ALLOW dots and crosses that have been reversed		
	Lone pair electrons can be shown as separated (rather than having to be paired up) – it is the total number of electrons in each outer shell that matters		
	Stand alone marks		
	If molecule shown as charged then 2 max		

Question Number	Acceptable Answers	Reject	Mark
1(d)(i)		$\begin{array}{c} \begin{array}{c} CH_3 \\ H \\ $	1

Question Number	Acceptable Answers	Reject	Mark
1(d)(ii)	$C_7H_{16} \rightarrow C_7H_{14} + H_2$	Formulae other than molecular formulae	1
	ALLOW $C_6H_{11}CH_3$ IGNORE state symbols, even if	Any other structural or displayed formulae	
	incorrect		

Question Number	Acceptable Answers	Reject	Mark
1(d) (iii)	Any ONE of: (a cyclic alkane) has more efficient combustion allows smoother burning increases octane number reduces knocking / less likely to produce pre-ignition is a more efficient fuel burns better / easier to burn /combusts more easily / improves combustion IGNORE (a cyclic alkane): increases the volatility of a fuel "ignites more easily" "is a better fuel" "burns more cleanly" IGNORE (a cyclic alkane) has a lower boiling point mentions of viscosity safer fuel	Less pollution / reduce waste High atom economy Produces useful products / hydrogen Used to make polymers Produces substances in higher demand / more valuable	1

Question	Acceptable Answers	Reject	Mark
Number			
1 (e)(i)	2,2-dimethylpentane	2-dimethylpentane	1
	IGNORE missing hyphen/missing		
	comma		

Question	Acceptable Answers	Reject	Mark
Number 1(e)(ii)			2
	(1)		
	(1)		
	IGNORE names even if incorrect		
	IGNORE different length bonds		
	IGNORE direction of methyl groups		

Question Number	Acceptable Answers	Reject	Mark
1 (f)(i)	U.V. / U.V.light / light / sunlight		1
	ALLOW high temperature	heat alone	

Question Number	Acceptable Answers	Reject	Mark
1(f)(ii)	$\begin{array}{rcl} CI_2 \rightarrow & CI \bullet & + & CI \bullet & / \\ CI_2 \rightarrow & 2CI \bullet & \end{array}$		1
	IGNORE any curly arrows, even if incorrect IGNORE C ₄ H ₁₀ given on both sides		

Question Number	Acceptable Answers	Reject	Mark
1 (f)(iii)	Homolytic (fission)	Photolysis (fission) / free radical (fission)	1
	IGNORE any formulae and arrows		

Question Number	Acceptable Answers	Reject	Mark
1(f)(i v	propagation step) $C_4H_{10} + CI \cdot \rightarrow C_4H_9 \cdot + HCI$ (1)(Second propagation step) $C_4H_9 \cdot + CI_2 \rightarrow C_4H_9CI + CI \cdot$ (1)	Any reactions involving Hydrogen radicals scores zero Reverse of first reaction	2
	Formulae can be displayed 'dots' can be anywhere on free radical but no dots at all scores zero ALLOW in either order Incorrect alkane / halogenoalkane but two correct propagation steps scores 1 out of 2		

Question Number	Acceptable Answers	Reject	Mark
1 (f)(v)	Any ONE of:		1
	C_4H_9 + CI $\rightarrow C_4H_9CI$		
	OR		
	$CI \cdot + CI \cdot \rightarrow CI_2$		
	OR		
	C_4H_9 · + C_4H_9 · $\rightarrow C_8H_{18}$		

Question Number	Correct Answer	Reject	Mark
2 (a)(i)	Easier to transport / easier to store / less space / less volume needed for storage / easier to handle / easier to transfer <i>IGNORE</i> references to "safety" Accept Denser/cheaper to transport OWTTE	Just "cost"	1

Question Number	Correct Answer	Reject	Mark
2 (a)(ii)	skeletal formula (1)		4
	Name: butane (1) Stand alone		
	skeletal formula (1)		
	Name: methylpropane OR 2-methylpropane (1) <i>IGNORE</i> incorrect punctuation [e.g. extra/missing hyphens, etc.] Stand alone		
	<i>IGNORE</i> displayed formulae if also given with skeletal formulae		
	if 2 correct displayed formulae are given max 1 out of 2 for the structures		

Question Number	Correct Answer	Reject	Mark
2 (a)(iii)	(Structural) isomers		1

Question Number	Correct Answer	Reject	Mark
2 (b)(i)	$Cl_2 \rightarrow Cl \cdot + Cl \cdot /$ $Cl_2 \rightarrow 2Cl \cdot $ (1) (U.V.) light / sunlight (1) Must show the dots \cdot <i>IGNORE</i> any subsequent propagation steps in (b)(i)	heat alone	2

Question Number	Correct Answer	Reject	Mark
2 (b)(ii)	C_3H_8 + CI· \rightarrow C_3H_7 · + HCI (1)		2
	C_3H_7 + $CI_2 \rightarrow C_3H_7CI$ + CI (1)		
	Must show the dots •		

Question Number	Correct Answer	Reject	Mark
2 (b)(iii)	C_3H_7 + CI \rightarrow C_3H_7CI		1
	OR		
	$CI \cdot + CI \cdot \rightarrow CI_2$		
	OR		
	C_3H_7 + C_3H_7 $\rightarrow C_6H_{14}$		
	Must show dots in termination step		

Question Number	Correct Answer	Reject	Mark
2 (c)(i)	Alkene / triene Accept Diene Carbon-carbon double bond		1

Question Number	Correct Answer	Reject	Mark
2 (c)(ii)	From: Red / brown / orange / yellow or combinations of these colours		1
	To: colourless both colours needed	"clear" instead of colourless	

Question Number	Correct Answer	Reject	Mark
2 (c)(iii)	Electrophilic (1)		2
	addition (1)		

Question	Correct Answer	Reject	Mark
Number			
2 (c)(iv)	Calculation:		2
	0.01 mol myrcene reacts with 0.03 mol $\rm H_2$		
	OR 1 mol myrcene reacts with 3 mol H_2		
	(1) Structural formula:		
	(CH ₃) ₂ CH(CH ₂) ₃ CH(CH ₃)CH ₂ CH ₃		
	OR		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	Accept Fully displayed formula/skeletal formula		
	Mark calculation and structural formula independently.		

Question Number	Correct Answer	Reject	Mark
2 (d)	$ \begin{array}{c c} & CH_3 & H \\ & CH_3 & CH_3 \\ & CH_3 & CH_3 \\ & CH_3 & CH_3 \\ & CH_3 & (n) \end{array} $ repeat unit (1) continuation bonds shown (but these bonds do not have to cut through the brackets) (1) <i>n</i> not essential <i>IGNORE</i> the position of " <i>n</i> " relative to the repeat unit (e.g. can be written as a superscript)		2

Question Number	Acceptable Answers	Reject	Mark
3(a)	$C_2H_6(g) + 3\frac{1}{2}O_2(g) \rightarrow 2CO_2(g) + 3H_2O(I)$ Formulae and states (1) Balancing of correct entities (1)		2
		Multiples	

Question Number	Acceptable Answers		Reject	Mark
3(b)	Notice the first mark is for the there are 3 separate additional calculation			4
	нн нн			
	$H\text{-}C\text{-}C\text{-}H + C\text{I}\text{-}C\text{I} \rightarrow H\text{-}C\text{-}C\text{-}C\text{I} +$	H-CI		
	нн нн (1)		
	Check all bonds displayed espe H-	cially CI-CI and		
			Incorrect / no sign and /	
	Calculation marks:		or incorrect	
	+413 + 243 (1) (-)(346 + 4	432) (1)	units	
	OR 656 (1) (-) 778 (1)		
	= −122 (kJ mol ⁻¹) (1)			
	Fully correct answer to calculat working	ion with no (3)		
	Extra 5x413 and 347 may be in sides, giving 3068 and (-)3190			
	Allow other same values(s) mis sides	ssing from both	La como ch	
	Bonds breaking	(1)	Incorrect units loses	
	Bonds making	(1)	this mark	
	[Bonds breaking - bonds makir correct answer with sign	ng] to give (1)		

Question Number	Acceptable Answers		Reject	Mark
3 (c)(i)	Allow homolysis / atomization / homolytic (fission) Ignore any reference to free radical substitution	1) 1)	Free radical substitution alone Photolysis	2

Question Number	Acceptable Answers	Reject	Mark
3 (c)(ii)	$CH_3CH_2 \bullet + CI-CI \rightarrow CH_3CH_2CI + CI \bullet$		3
	OR		
	$CH_3CH_2 \bullet + CI-CI \rightarrow C_2H_5CI + CI \bullet$		
	Both products correct including dot (1)		
	Two half headed arrows showing homolyticbreaking of CI-CI bond(1)		
	Half headed arrow from radical to pair with a Cl arrow		
	OR		
	One arrow from chlorine bond clearly to ethyl radical (1)		
	Arrows must be single-headed		
	CH3CH2 CE÷Ce		
	CH3 CH2 a cu		
	CH3CH2 a cu		
	CH_3CH_2		
	The two dots in the covalent bond do not have to be shown		

Question Number	Acceptable Answers		Reject	Mark
3 (c)(iii)	$CI \cdot + CI \cdot \rightarrow CI_2$ (1))		2
	$\bullet CH_2CH_3 + \bullet CH_2CH_3 \rightarrow CH_3CH_2CH_2CH_3 / C_4H_1$	10	C_4H_{12} CH ₃ CH ₂ CH ₃ CH ₂	
	(1)		
	• $CH_2CH_3 + CI \cdot \rightarrow CH_3CH_2CI$ (1	1)		
	Penalise missing dots once			
	Allow $\bullet C_2H_5$ for $\bullet CH_2CH_3$			
	Di and tri substitution steps			

Question	Acceptable Answers	Reject	Mark
Number			
3 (d)	$C_2H_6 \rightarrow C_2H_4 + H_2$		1
	Allow $2C_2H_6 \rightarrow C_2H_4 + 2CH_4$		

Question Number	Acceptable Answers		Reject	Mark
3 (e)	Any two from:			2
	(It) produces (more) petrol / gasoline / diesel / jet fuel / LPG / liquid petroleum g / fuel	gas (1)	Points based on atom economy / renewable fuels alone	
	Short chain alkanes / lighter fractions are more useful products	e (1)	Easier to transport / store	
	Demand is greater for shorter chain alkar / lighter fractions / smaller molecules OR converts surplus of low demand fractions	2		
	It produces ethane / short chain alkenes making poly(ethene) / ethane-1,2-diol / ethanol / plastics / polymers	(1) for (1)	Short chain alkenes / ethene more useful alone	
	Smaller alkanes give less pollution/burn more efficiently	(1)		
	Recycles waste products	(1)	Recycles alone	
	As a source of hydrogen	(1)		
	NB examiners need to look carefully at the vowel in the middle of alkane / alkene / ethane / ethene if not clear do not give E			

Question Number	Acceptable Answers	Reject	Mark
4(a)(i)	$\begin{array}{rcl} CH_3CH_3 + Cl \bullet \rightarrow CH_3CH_2 \bullet + HCI \\ OR \\ CH_3CH_2 \bullet + Cl_2 \rightarrow CH_3CH_2Cl + Cl \bullet \end{array}$		1

Question Number	Acceptable Answers	Reject	Mark
4(a)(ii)	$\begin{array}{rcl} CH_{3}CH_{2} \bullet & + & Cl_{2} & \rightarrow & CH_{3}CH_{2}Cl & + & Cl \bullet \\ OR \\ CH_{3}CH_{3} & + & Cl \bullet & \rightarrow & CH_{3}CH_{2} \bullet & + & HCl \\ \end{array}$ N.B. different answers for (i) and (ii) needed		1

Question Number	Acceptable Answers	Reject	Mark
4(a)(iii)	$\begin{array}{rcl} 2CH_3CH_2 \bullet & \rightarrow & CH_3CH_2CH_2CH_3 \\ OR \\ CH_3CH_2 \bullet & + & CI\bullet & \rightarrow & CH_3CH_2CI \end{array}$	$Cl \bullet + Cl \bullet \to Cl_2$	1

Question Number	Acceptable Answers	Reject	Mark
4(a)(iv)	$\begin{array}{rcl} CH_{3}CH_{2} \bullet + CI \bullet & \rightarrow & CH_{3}CH_{2}CI \\ OR \\ 2CH_{3}CH_{2} \bullet & \rightarrow & CH_{3}CH_{2}CH_{2}CH_{3} \\ \end{array}$ $\begin{array}{rcl} N.B. & different \ answers \ for \ (iii) \ and \\ (iv) \ needed \end{array}$		1

Question Number	Acceptable Answers	Reject	Mark
4(b)	First mark: Structural formula (enough to see the structure) of any polyhalogenated ethane derivative OR any polyhalogenated methane derivative	Butane /C ₄ H ₁₀ / CH ₃ CH ₂ CH ₂ CH ₃ / chlorobutane / hexane / chloromethane	2
	ALLOW correct displayed or skeletal formula (1)		
	Second mark: If first mark awarded the name must be consequentially correct		
	IGNORE any missing or incorrect numbering in name (e.g. "dichloroethane" scores the mark)		
	IGNORE missing or incorrect hyphens		
	If first mark NOT awarded then only ALLOW correct name of any polyhalogenated ethane or polyhalogenated methane derivative (1)		

Question Number	Acceptable Answers	Reject	Mark
4(c)(i)	 1st mark for HAZARD: This mark is for the idea of: (substance or procedure that) can cause harm/may cause harm/has the potential to do harm/can be dangerous ALLOW references to specific hazards such as toxic/flammable /harmful/ irritant /corrosive /oxidizing/ carcinogenic for the mark (1) 	Just "causes harm"/just "is a danger"	2
	2 nd mark for RISK: This mark is for the idea of likelihood/probability/chance that harm will result (from the use of a substance or a procedure) (1)		

Question Number	Acceptable Answers	Reject	Mark
4(c)(ii)	fume cupboard OR gloves OR u.v. goggles	Just 'open windows'/Just well-ventilated lab/Just 'gas mask'/Just "use of smaller quantities"/close d system/closed experiment	1